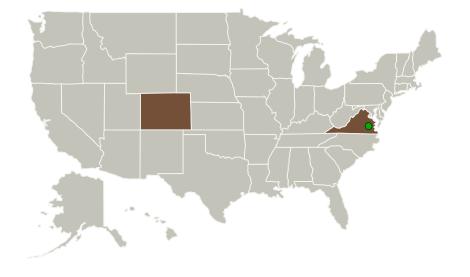
Multifunctional Polyolefin Matrix Composite Structures, Phase I



Completed Technology Project (2015 - 2015)

Project Introduction

Polyethylene, and ultrahigh molecular weight polyethylene (UHMWPE) in particular, is an outstanding material for radiation shielding in the sense that its extraordinarily high hydrogen content both minimizes the production of secondary ions during exposure to energetic radiation and captures neutrons. Its low density and high wear resistance also make it attractive for the structures of manned spacecraft and extraterrestrial habitats. However, its use in structures is limited by flammability and poor mechanical properties under load compared to other structural materials. Composites with UHMWPE are problematic because load is not easily transferred to or from UHMWPE, and because its melt state is too viscous to infiltrate fiber preforms. In this Phase I project, TDA will apply its recent advances in composite manufacturing to create a UHMWPE-matrix composite that has good load transfer to a creepmitigating continuous fiber reinforcement. Such a composite will not only have outstanding radiation shielding properties, but also have sufficient mechanical properties to be useful as a structural material.

Primary U.S. Work Locations and Key Partners

Multifunctional Polyolefin Matrix Composite Structures, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Multifunctional Polyolefin Matrix Composite Structures, Phase I

Completed Technology Project (2015 - 2015)

Organizations Performing Work	Role	Туре	Location
TDA Research, Inc.	Lead Organization	Industry	Wheat Ridge, Colorado
Langley Research Center(LaRC)	Supporting Organization	NASA Center	Hampton, Virginia

Primary U.S. Work Locations	
Colorado	Virginia

Project Transitions

0

June 2015: Project Start

December 2015: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139147)

Images

Briefing Chart

Multifunctional Polyolefin Matrix Composite Structures Briefing Chart

(https://techport.nasa.gov/imag e/130153)

Final Summary Chart Image Multifunctional Polyolefin Matrix Composite Structures, Phase I Project Image (https://techport.nasa.gov/imag e/129051)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

TDA Research, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

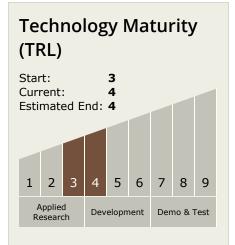
Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Michael Diener


Co-Investigator:

Michael Diener

Multifunctional Polyolefin Matrix Composite Structures, Phase I

Completed Technology Project (2015 - 2015)

Technology Areas

Primary:

- TX06 Human Health, Life Support, and Habitation Systems
 - └─ TX06.5 Radiation
 - ☐ TX06.5.3 Protection Systems

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

